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Abstract 

This paper presents an analysis of factors affecting system 
performance in the ASpIRE (Automatic Speech recognition In 
Reverberant Environments) challenge. In particular, overall 
word error rate (WER) of the solver systems is analyzed as a 
function of room, distance between talker and microphone, 
and microphone type. We also analyze speech activity 
detection performance of the solver systems and investigate its 
relationship to WER. The primary goal of the paper is to 
provide insight into the factors affecting system performance 
in the ASpIRE evaluation set across many systems given 
annotations and metadata that are not available to the solvers. 
This analysis will inform the design of future challenges and 
provide insight into the efficacy of current solutions 
addressing noisy reverberant speech in mismatched conditions. 

Index Terms: speech recognition, reverberant rooms, 
microphone audio 

1. Introduction 

 The development of automatic speech recognition (ASR) that 
is able to perform well across a variety of acoustic 
environments and recording scenarios is the focus of many 
research efforts [1, 2]. Previous work with the AMI meetings 
room corpus [3], the ICSI meeting corpus [4, 5], and the MC-
WSJ-AV corpus [6], for example, have shown that ASR 
performance degrades in various room and microphone 
conditions and also when data used for training is mismatched 
with data used in testing. 

In this paper, we analyze ASR performance of the solver 
systems submitted to the ASpIRE challenge using word error 
rate (WER) as the performance metric. For a full description 
of the details of the ASpIRE challenge, see [7]. Toward the 
goal of evaluating ASR system performance with mismatched 
training and test conditions, the solver systems were trained on 
the Fisher conversational telephone training corpus [8]. Solver 
systems were then evaluated on a new speech corpus, the 
Mixer 8 Pilot corpus, recorded for IARPA by the Linguistic 
Data Consortium (LDC). The Mixer 8 Pilot corpus consists of 
conversational American English speech recorded via multiple 
simultaneous microphones spread across seven different 
rooms in an office-suite environment. Each room exhibited 
different shapes, sizes, surface properties, and noise sources. 
The goal of collecting data in this environment was to capture 
variability that can be observed in real-world speech, and to 
provide a significant mismatch to the training dataset. 

The purpose of our analysis is to identify the factors that 
contribute to the performance of the solver systems. Namely, 

we analyze performance as a function of recording room, 
talker placement, and microphone type and placement. The 
impact of speech activity detection (SAD) on performance is 
also investigated. 

The rest of this paper is organized as follows: Section 2 gives 
a brief description of the Mixer 8 Pilot corpus used for 
evaluation and presents the overall performance of the solver 
systems on the corpus. Section 3 presents the effects of 
recording conditions on ASR performance. Section 4 evaluates 
the relationship between SAD and ASR performance. 
Discussion and conclusions are presented in Section 5. 

2. Methods 

2.1. Mixer 8 Evaluation corpus 

Data evaluated in this paper consists of 120 sessions broken 
into two different evaluation sets: ASpIRE_single_eval and 
ASpIRE_multi_eval. Each evaluation set consists of roughly 
10 hours of audio, with ASpIRE_single_eval containing one 
microphone recording per session and ASpIRE_multi_eval 
containing a selection of six of the eight microphone 
recordings per session. A simultaneous close-talking telephony 
channel was recorded as well, but not provided to solvers. The 
evaluation data was hand-transcribed by Appen Butler Hill for 
use in scoring. 

In addition to the transcripts provided by Appen, LDC 
provided detailed floor plans and measurements that proved 
useful in our analysis. Some of these measurements include: 

 Distances between talkers and microphones 

 Talker positions and angles, relative to the floor 
plans 

 Microphone positions and angles, relative to the 
floor plans 

Special care was taken during the recordings to ensure proper 
microphone calibration. The microphone gains were calibrated 
relative to a reference microphone in a special enclosure. This 
allows a given power measurement relative to full scale to be 
approximately mapped to dB SPL. Audio calibration 
sequences (including clicks, tone sweeps, and other stimuli) 
were recorded in each room on each day and provided to us, 
along with the sound-meter level recordings of the audio 
calibration sequences. None of the transcriptions, 
measurements, or calibration information were provided to the 
solvers. 

2.2. Solver Systems and Performance 

Conversational Time Marked files (CTMs) for twelve single-
microphone systems and one multi-microphone system were 
submitted to the ASpIRE challenge. In this paper, we confine 
our analysis to the single-microphone systems. The systems 
came from five solvers whose overall system performance is 
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anonymously summarized in Table 1 with the nth scoring 
solver’s mth best system receiving the id n-m. Primary systems 
were identified by the solvers as the systems they felt would 
perform best on the evaluation data. 

 

Solver-System Primary WER 

1-1 No 43.9 

1-2 No 44.0 

1-3 Yes 44.3 

2-1 Yes 44.3 

3-1 Yes 44.8 

4-1 No 50.7 

4-2 Yes 52.7 

4-3 No 52.8 

5-1 Yes 53.4 

5-2 No 54.1 

4-4 No 54.4 

4-5 No 54.7 

Table 1. Solver-system coding with WER. 

3. Effect of Recording Conditions 

3.1. Significance of Experimental Setup 

The ASpIRE experimental setup varied factors including 
microphone, speaker position, room, and system, and we 
wished to investigate whether any of these factors had a 
significant effect. To explore this question, we ran a 
multifactor repeated measures Analysis of Variance 
(ANOVA). The within subject variable was system and the 
between-subject variables were channel, room, and speaker 
position. The dependent variable was WER. Table 2 
summarizes the ANOVA output, where interactions are 
specified with colons. 

Our ANOVA results indicate that the main effects of room and 
channel on WER are significant; the interaction effect of room 
and channel is also significant, suggesting that microphone 
position as well as microphone audio characteristics affect 
WER. The main effect of speaker position is not significant, 
which is as expected since speaker position labels are 
arbitrary. However, speaker position does have a significant 
three-way interaction effect with room and channel, again 
suggesting a relationship between distance between speaker 
and microphone and WER. The strength of the interaction 
effects implies that varying room, channel, and speaker 
position in the experimental setup did have an effect on WER; 
this will be explored in more detail in the next section. 

The system effect of the ANOVA implies that solver systems 
did differ significantly in WER. Also, the interactions between 
room and system and channel and system suggest that solver 
systems had significantly different per-room and per-channel 
outputs.  

 

 

 

Audio file Effect 

Factor 
Degrees of 
Freedom F Value Pr(>F) 

room 6 9.667 0.0000028*** 

channel 7 4.395 0.001372** 

spkr_pos 2 0.1 0.904875 

room:channel 38 2.6 0.002632** 

room:spkr_pos 9 0.712 0.694311 

channel:spkr_pos 13 1.409 0.204064 

room:channel:spkr_pos 9 4.546 0.000519*** 

System Effect 

Factor 
Degrees of 
Freedom F Value Pr(>F) 

system 11 130.046 <2.00E-16*** 

room:system 66 4.638 <2.00E-16*** 

channel:system 77 1.702 0.000629*** 

spkr_pos:system 22 0.424 0.990572 

room:channel:system 418 0.831 0.968421 

room:spkr_pos:system 99 0.812 0.893565 

channel:spkr_pos:system 143 0.919 0.720409 

room:channel:spkr_pos:system 99 0.684 0.988062 

Table 2. Output of repeated measures ANOVA. 

3.2. Room Setup Attenuation Metrics 

In an effort to understand how to characterize the interaction 
of room, channel, and speaker position, we investigated the 
correlation between system WER and various metrics aimed at 
capturing the effect of microphone and speaker orientation on 
attenuation of the direct sound. In particular, we examined the 
distance attenuation (due to the distance between the talker 
and the microphone), the head directional attenuation (due to 
the way the speaker was facing relative to the microphone), 
and the microphone directional attenuation (due to the way 
the microphone was oriented relative to the speaker).  

As the angle of the microphone moves behind the talker, an 
effect called head shadow begins to occur, causing a 
frequency-dependent attenuation of the signal. Loosely based 
on a summary of measurements at 2 kHz in [9], we modeled 
the head directional attenuation in dB as a simple linear 
function of angle from 0 dB to 10 dB, moving from in-front-of 
to directly behind the head on the horizontal plane (Figure 1).  

  

 

 

 

 

Figure 1. Head directional attenuation: 10*θ/180. 
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To calculate the microphone directional attenuation, we used 
linear piecewise functions to approximate the microphone 
polar attenuation patterns at 1000 Hz. Figure 2 shows the polar 
attenuation of microphone 5, a Shure MX158, and Figure 3 
shows our linear approximation. For omnidirectional 
microphones, the microphone directional attenuation was zero. 
The complete set of ASpIRE microphones is listed in Table 3. 

                      

Figure 2. Polar attenuation of microphone 5, a Shure 
MX158 [10]. 

                    

Figure 3. Piecewise linear approximation of 
microphone 5 attenuation. 

Microphone ID Model Notes 

1 Earthworks M23 Omnidirectional 

2 DPA 4090 Omnidirectional 

3 Samson SAC02 Directional (Pencil Mic) 

4 R0DE NT6 Directional (Miniature) 

5 Shure MX185 Directional (Diaphragm 
condenser) 

6 Sony ECMAW3 Omnidirectional (Bluetooth) 

7 Canon WM-V1 Omnidirectional (Bluetooth) 

8 Audio Technica AT8035 Directional (Shotgun Mic) 

 

Table 3. ASpIRE microphones. 

Our final room setup attenuation metric was total attenuation, 
which is the sum of the distance, head directional, and 
microphone directional attenuation. To evaluate the 
relationship between the attenuation metrics and WER, we 
calculated the Spearman’s rank correlation coefficient, which 
was chosen for its ability to detect correlations in nonlinear 

relationships. The rho values are included in Table 4; with the 
exception of microphone directional attenuation, all metrics 
achieve significance at the p ≤ 0.05 level. The positive 
Spearman’s rho values imply that recordings from 
microphones close to the subject (and oriented toward the 
subject’s mouth) tend to perform better than recordings from 
microphones further away from the subject. 

Total attenuation or the sum of distance attenuation and head 
directional attenuation show the strongest correlation for all 
systems, suggesting that taking into account head orientation 
as well as the distance between speaker and microphone 
provides an improved model of the effect of distance 
attenuation on WER. The significance of microphone 
directional attenuation is less clear, which is notable 
considering the strong directionality of some of the 
microphones in the experimental setup. Variation in 
microphone attenuation at different frequencies could be 
causing the speech to be filtered rather than broadly 
attenuated. The significance of microphone orientation for 
directional microphones on WER is worth further study for 
future data collections; if orientation is not significant it may 
not be worth carefully varying, and if it is more significant 
than it appears under our current investigation, it may be worth 
recording in more detail. 

 

System WER 
ρ(D. 
Atten) 

ρ(HD 
Atten.) 

ρ(D + 
HD 
Atten) 

ρ(MD 
Atten.) 

ρ(Total 
Atten.) 

1-1 43.9 0.309 0.196 0.349 0.095 0.361 

1-2 44.0 0.342 0.191 0.375 0.105 0.385 

1-3 44.3 0.36 0.202 0.395 0.125 0.411 

2-1 44.3 0.366 0.218 0.431 0.079 0.408 

3-1 44.8 0.286 0.232 0.355 0.150 0.408 

4-1 50.7 0.305 0.227 0.376 0.071 0.360 

4-2 52.7 0.273 0.259 0.37 0.062 0.343 

4-3 52.8 0.277 0.257 0.373 0.065 0.347 

5-1 53.4 0.388 0.194 0.419 0.126 0.422 

5-2 54.1 0.38 0.185 0.409 0.113 0.409 

4-4 54.4 0.282 0.244 0.364 0.054 0.334 

4-5 54.7 0.27 0.253 0.357 0.060 0.335 

Table 4. Spearman’s Rho values between WER and 
direct signal attenuation metrics (D = distance, HD = 
head directional, MD = microphone directional). 
Values that pass a significance test of p ≤ 0.05 are in 
bold. 

3.3. Noise Effects 

While our signal attenuation metrics are correlated with solver 
WER, they do not account for all of the variability. Room 
noise is known to have an effect on ASR performance and we 
analyzed the effect of noise on WER across systems. To 
measure room noise, we calculated the average noise 
background level and the ratio of speech plus noise power to 
noise power, which we will hereafter refer to as SNRp. To 
detect speech and noise, audio files were filtered using A-
weighting in Matlab and the noise-only regions were split out 
using ground-truth SAD labels (see description in section 4). 
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The power of the resulting noise and non-noise signals were 
found by calculating the mean of the squared values.  

The Spearman’s rank correlation coefficients between WER 
and noise background level, and WER and SNRp, are included 
in Table 5. Table 5 also includes a column for SAD proportion 
correct which will be discussed in Section 4. At p ≤ 0.05, 
background level fails to achieve significance; however, SNRp 
does achieve significance. 
 
SNRp is strongly negatively correlated to system WER, 
implying that system performance was affected by ambient. 
The signal component measured in SNRp contains the direct 
speech plus all other reflected speech, including energy in the 
reverberant field, and the noise field. High values of SNRp do 
not necessarily imply highly intelligible speech, so it is 
interesting that it is strongly correlated with WER. 
 
SNRp and total attenuation are also significantly correlated as 
shown in Figure 4; their Spearman rank correlation coefficient 
is -0.524, p ≤ 0.05. This could imply that manipulating the 
direct sound in the experimental setup also affected SNRp. 
However, when we compared the correlation coefficients of a 
linear model predicting WER from SNRp with the multiple 
correlation coefficient of a linear model predicting WER from 
both SNRp and total attenuation (Table 6), we saw only a 
small difference. This pairs with the stronger correlation of 
SNRp to WER than total attenuation to WER to suggest that 
SNRp is related to ASR performance in a manner beyond what 
is predictable by total attenuation. 
 

 

Figure 4. Total Attenuation vs SNRp 

 
 
 
 
 
 
 
 
 

 
System WER ρ(Noise Background 

Level) 
ρ(SNRp) ρ(Prop. 

Correct) 
1-1 43.9 0.125 -0.621 -0.550 
1-2 44.0 0.136 -0.607 -0.602 
1-3 44.3 0.151 -0.622 -0.580 
2-1 44.3 0.125 -0.711 -0.424 
3-1 44.8 0.184 -0.621 -0.556 
4-1 50.7 0.115 -0.587 -0.542 
4-2 52.7 0.108 -0.579 -0.531 
4-3 52.8 0.112 -0.585 -0.536 
5-1 53.4 0.106 -0.577 -0.554 
5-2 54.1 0.089 -0.571 -0.581 
4-4 54.4 0.076 -0.581 -0.591 
4-5 54.7 0.076 -0.577 -0.586 

Table 5. Spearman’s Rho values between WER and 
noise background level, SNRp, and proportion correct 
on SAD judgments. Values that pass a significance 
test of p ≤ 0.05 are in bold. 

System WER R(Total 
Atten.) 

R(SNRp) R(Total Atten. 
* SNRp) 

1-1 43.9 0.372 0.672 0.691 
1-2 44.0 0.392 0.664 0.685 
1-3 44.3 0.412 0.673 0.695 
2-1 44.3 0.399 0.724 0.736 
3-1 44.8 0.385 0.675 0.688 
4-1 50.7 0.363 0.661 0.673 
4-2 52.7 0.354 0.653 0.665 
4-3 52.8 0.352 0.658 0.678 
5-1 53.4 0.422 0.639 0.654 
5-2 54.1 0.401 0.631 0.640 
4-4 54.4 0.346 0.657 0.665 
4-5 54.7 0.346 0.654 0.662 

Table 6. Correlation coefficients and coefficients of 
multiple correlation between WER, total attenuation, 
and SNRp. All values are significant at p ≤ 0.05. 

4. Efficacy of Speech Activity Detection 

A key component of the ASpIRE Challenge is the ability of 
systems to implicitly or explicitly extract speech regions from 
which to hypothesize transcripts. In this section, we estimate 
speech activity detection performance (SAD) for each system 
across a range of speech conditions and relate that detection 
performance to system WER. 

To compute reference SAD values, we divided the audio file 
into 1 millisecond chunks which we annotated to show 
whether the chunk occurred during transcribed speech. We 
computed SAD values for solver system outputs using the 
same method, and then computed the number of SAD true 
hits, misses, false alarms, and correct rejections for each 
system, which are included in Table 7. Three files were 
omitted from the SAD analysis due to incomplete system 
outputs from some performers. 

Table 5 contains the Spearman’s rank correlation coefficient 
for the per-file relationship between system WER and the 
proportion of correct SAD judgments (true hits + correct 
rejections). At a p-value of 0.05, system WER and correct 
SAD judgments are significantly correlated for all single-
microphone systems.  
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System 
WER 

Average 
Prop. 
Correct 

Average 
Prop. Miss 

Average 
Prop. False 
Alarm 

1-1 43.9 0.848 0.131 0.022 

1-2 44.0 0.828 0.154 0.018 

1-3 44.3 0.829 0.153 0.018 

2-1 44.3 0.848 0.133 0.019 

3-1 44.8 0.841 0.149 0.010 

4-1 50.7 0.785 0.210 0.005 

4-2 52.7 0.795 0.195 0.010 

4-3 52.8 0.796 0.195 0.010 

5-1 53.4 0.789 0.191 0.020 

5-2 54.1 0.786 0.192 0.022 

4-4 54.4 0.782 0.209 0.009 

4-5 54.7 0.78 0.211 0.009 

Table 7. System SAD performance 

Focusing on the proportion of correct SAD judgments (which 
we will refer to as the “SAD accuracy” below), we include a 
plot of average system SAD accuracy against WER in Figure 
5. The systems show two clusters, with top performing 
systems also achieving the best SAD performance. Although 
we cannot claim that this shows that SAD performance 
determines WER, it implies that solvers might try improving 
their SAD systems as they seek to improve their WER. Figure 
6 shows that although all submitted systems had very low false 
alarm SAD rates, top-performing systems cluster in their SAD 
operating point at a lower miss rate, suggesting a possible 
direction for some solvers to explore in improving their 
performance on the ASpIRE task. 

 

Figure 5. Average system SAD accuracy versus 
system WER 

 

Figure 6. DET plot for system average SAD 
performance 

In an effort to investigate whether high SNR conditions might 
be correlated to degradations in SAD performance as well as 
WER, we computed the Spearman’s rank correlation 
coefficients between SNRp and solver SAD. Table 8 shows 
that the two are indeed significantly correlated. These results 
further suggest that if solvers improve their SAD systems on 
higher SNR conditions, they might expect to see gains in 
WER. 

 

System WER 
ρ(SNRp, SAD 
Performance) 

1-1 43.9 0.463 

1-2 44.0 0.473 

1-3 44.3 0.457 

2-1 44.3 0.397 

3-1 44.8 0.456 

4-1 50.7 0.469 

4-2 52.7 0.464 

4-3 52.8 0.464 

5-1 53.4 0.522 

5-2 54.1 0.531 

4-4 54.4 0.470 

4-5 54.7 0.464 

Table 8. Spearman’s rho for the relationship between 
SNRp and system SAD performance. All values are 
significant at p ≤ 0.05.  

5. Discussion and Conclusion 

From the analysis conducted in this paper, we observed that 
the experimental factors of room, channel, and speaker 
position varied in the ASpIRE challenge have a significant 
interactional effect on ASR performance. 
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We demonstrated that the total distance between microphone 
and speaker, taking into account orientation of both, is better-
correlated with ASR system performance than simpler 
distance metrics. We showed that room noise measured 
through SNRp has a strong correlation to degradations in 
WER, and that total attenuation is strongly correlated with 
SNRp. Finally, we showed that system SAD performance also 
shows a strong correlation to WER as well as to SNRp and 
naturally partitions the better-performing systems in the 
ASpIRE challenge from the rest. This result implies that 
solvers might perform better in conditions similar to those in 
the ASpIRE challenge by doing further work to improve their 
SAD systems under high SNR. 

Work remains to be done to further investigate the effect of 
microphone direct signal attenuation on ASR performance in 
order to inform the care with which it is treated in future data 
collections. Additionally, although top solver systems were 
very similar in WER, the solvers used highly varied ASR 
algorithms. It would be interesting to do a more detailed 
analysis of differences (if any) in how various ASR techniques 
are affected by the experimental conditions varied in the 
ASpIRE challenge. Finally, further analysis could be done to 
see what gain in WER would be possible from a combined 
system. 
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